Welcome to libCEED’s User Manual!¶
Contents
- Introduction
- Getting Started
- Interface Concepts
- Examples
- Common notation
- Standalone libCEED
- CEED Bakeoff Problems
- PETSc demos and BPs
- Compressible Navier-Stokes mini-app
- Solid mechanics mini-app
- Julia, Python, and Rust Interfaces
- API Documentation
- Floating Point Precision
- Developer Notes
- Contributing
- Code of Conduct
- Changes/Release Notes
Indices and tables¶
- sod
Sod shock tube. https://en.wikipedia.org/wiki/Sod_shock_tube. Accessed: 01-30-2022.
- AB93
Ellen M Arruda and Mary C Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2):389–412, 1993. doi:10.1016/0022-5096(93)90013-6.
- BAB+21
Jed Brown, Ahmad Abdelfattah, Valeria Barra, Natalie Beams, Jean Sylvain Camier, Veselin Dobrev, Yohann Dudouit, Leila Ghaffari, Tzanio Kolev, David Medina, Will Pazner, Thilina Ratnayaka, Jeremy Thompson, and Stan Tomov. libCEED: fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63):2945, 2021. doi:10.21105/joss.02945.
- BJ16
Jonathan R. Bull and Antony Jameson. Explicit filtering and exact reconstruction of the sub-filter stresses in large eddy simulation. Journal of Computational Physics, 306:117–136, 2016. doi:10.1016/j.jcp.2015.11.037.
- Col23
Tim Colonius. Chapter 8 - boundary conditions for turbulence simulation. In Robert D. Moser, editor, Numerical Methods in Turbulence Simulation, Numerical Methods in Turbulence, pages 319–357. Academic Press, 2023. doi:10.1016/B978-0-32-391144-3.00014-0.
- DPA+20
Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, and Paul Steinmann. A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid. International Journal for Numerical Methods in Engineering, 121(13):2874–2895, 2020. doi:10.1002/nme.6336.
- Ger86
M. Germano. Differential filters for the large eddy numerical simulation of turbulent flows. The Physics of Fluids, 29(6):1755–1757, 1986. doi:10.1063/1.865649.
- GRL10
F. X. Giraldo, M. Restelli, and M. Läuter. Semi-implicit formulations of the navier–stokes equations: application to nonhydrostatic atmospheric modeling. SIAM Journal on Scientific Computing, 32(6):3394–3425, 2010. doi:10.1137/090775889.
- Hol00
Gerhard Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester New York, 2000. ISBN 978-0-471-82319-3.
- HST10
Thomas J R Hughes, Guglielmo Scovazzi, and Tayfun E Tezduyar. Stabilized methods for compressible flows. Journal of Scientific Computing, 43:343–368, 2010. doi:10.1007/s10915-008-9233-5.
- Hug12
Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
- MDGP+14
Gianmarco Mengaldo, Daniele De Grazia, Joaquim Peiro, Antony Farrington, Freddie Witherden, Peter Vincent, and Spencer Sherwin. A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics. In AIAA Aviation 2014. Atlanta, June 2014. AIAA. doi:10.2514/6.2014-2923.
- PMK92
TC Papanastasiou, N Malamataris, and Ellwood K. A new outflow boundary condition. International Journal for Numerical Methods in Fluids, 14:587–608, March 1992. doi:10.1002/fld.1650140506.
- Pop00
Stephen B Pope. Turbulent Flows. Cambridge University Press, 2000. ISBN 9780521598866.
- PJE22a
Aviral Prakash, Kenneth E. Jansen, and John A. Evans. Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation. Computer Methods in Applied Mechanics and Engineering, September 2022. doi:10.1016/j.cma.2022.115457.
- PJE22b
Aviral Prakash, Kenneth E. Jansen, and John A. Evans. Invariant data-driven subgrid stress modeling on anisotropic grids for large eddy simulation. 2022. arXiv:arXiv:2212.00332.
- SHJ91
Farzin Shakib, Thomas JR Hughes, and Zdeněk Johan. A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 89(1-3):141–219, 1991. doi:10.1016/0045-7825(91)90041-4.
- SSST14
Michael L. Shur, Philippe R. Spalart, Michael K. Strelets, and Andrey K. Travin. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow, Turbulence and Combustion, 93(1):63–92, 2014. doi:10.1007/s10494-014-9534-8.
- SWW+93
Jerry M Straka, Robert B Wilhelmson, Louis J Wicker, John R Anderson, and Kelvin K Droegemeier. Numerical solutions of a non-linear density current: a benchmark solution and comparisons. International Journal for Numerical Methods in Fluids, 17(1):1–22, 1993. doi:10.1002/fld.1650170103.
- TS07
Tayfun E Tezduyar and Masayoshi Senga. SUPG finite element computation of inviscid supersonic flows with $yz\beta $ shock capturing. Computers and Fluids, 36(1):147–159, 2007. doi:10.1016/j.compfluid.2005.07.009.
- Tor09
Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-540-49834-6.
- VD56
E. R. Van Driest. On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23(11):1007–1011, November 1956. doi:10/ghbxk3.
- Whi99
Christian H Whiting. Stabilized Finite Element Methods for Fluid Dynamics Using a Hierarchical Basis. PhD thesis, Rennselear Polytechnic Institute, Troy, NY, 1999.
- WJD03
Christian H Whiting, Kenneth E Jansen, and Saikat Dey. Hierarchical basis for stabilized finite element methods for compressible flows. Computer Methods in Applied Mechanics and Engineering, 192(47-48):5167–5185, 2003. doi:10.1016/j.cma.2003.07.011.
- WWP09
Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009. doi:10.1145/1498765.1498785.
- ZZS11
Rui Zhang, Mengping Zhang, and Chi-Wang Shu. On the order of accuracy and numerical performance of two classes of finite volume weno schemes. Communications in Computational Physics, 9(3):807–827, 2011. doi:10.4208/cicp.291109.080410s.
- Brown10
J. Brown. Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D. Journal of Scientific Computing, October 2010. doi:10.1007/s10915-010-9396-8.